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In this paper, a new error-trellis syndrome decoding technique for convolutional
codes is developed. This algorithm is specialized then to the entire class of systematic
convolutional codes. Finally, this algorithm is applied to the high-rate Wyner-Ash convo-
lutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4
code, is treated in this paper. The error-trellis syndrome decoding method applied fo this
example shows in detail how much more efficient syndrome decoding is than, say, Viterbi
decoding, if applied to the same problem. For standard Viterbi decoding, 64 states would
be required, whereas in the example only 7 states are needed. Also, within the 7 states
required for decoding, many fewer transitions are needed between the states.

l. Introduction

This paper outlines a simplification of previous syndrome
decoding methods (Refs. 1, 2) for convolutional codes (CCs).
The new method involves finding minimum error paths in
what is called an error tree, or its more compact equivalent,
an error trellis, As will be shown, the computation of the
error trellis is accomplished by finding the solution of the
syndrome equations explicitly in terms of the received coded
sequence. The error trellis is a graph of all path solutions of
the syndrome equations. This new procedure for finding the
error trellis differs from previous methods in that it does not
involve an explicit computation of the syndrome.

After the error trellis has been computed, the minimum
weight path in the error trellis is found by any one of many
minimization techniques, including the Viterbi and sequential
minimum-path-finding techniques. The minimum error path
that is found by such a minimization of the path weights in
the error trellis is shown to be a best estimate of the correction
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‘factor needed to correct the “noisy” message. Such a noisy

message is obtained by the Massey and Sain method (Ref. 3)
of applying the right inverse of the generator matrix to the
received coded message.

Development of the new error trellis syndrome decoding
scheme is followed by a discussion of its application to high-
rate systematic convolutional codes. This application to high-
rate CCs shows the real advantage of syndrome decoding over
Viterbi decoding of CCs in terms of reduced complexity.

Il. Syndrome Decoding With the
Error Trellis

This section provides a brief development of the concepts
of a convolutional code (CC) needed for systematically con-
structing an etror trellis for minimum-error-path decoding.
Here, only a brief synopsis of these concepts is given, enough




to systematically construct an error tree or trellis without
resorting to the intermediate step of computing the syndrome.

The inputs and outputs of an (n, k) CC can be represented,
respectively, as D-transforms,

x(D) =3, xD (1)
j=0
and
y@) =3, 3o 2
=0

of the input sequence of k-vectors of form X = [x, X s
xkj] and the output sequence of n-vectors of form =
1j Pajs - -« » Vuyl, Where x;; and y;; belong to a finite Galois
field F = G(g) usually restricted to the binary field GF(2) of
two elements, and D is the delay operator. The input x(D)
and the output p (D) are linearly related by means of a k X n
generator matrix G(D) as follows:

y(D) = x(D) G(D) ©))

where the elements of G(D) are assumed usually to be poly-
nomials over the finite field GF(q), where ¢ is the power
of a prime integer. The maximum degree M of the polynomiél
elements of G(D) is called the memory delay of the code, and
the constraint length of the code isk =M + 1.

In order to avoid catastrophic error propagation, the
encoder matrix G(D) is assumed to be basic (Ref. 3). This
means that the Smith normal form of G(D) is

G=AI[,0] B 4)

where A = A(D) is a k¥ X k invertible matrix with elements
in F[D], the ring of polynomials in D over F, and B = B(D)
is an n X n invertible matrix with elements in F[D]. The
elements of the inverses 4~! and B~! of matrices 4 and B,
respectively, are polynomials in F [D] (Ref. 4).

By definition, the parity check matrix associated with
G = G(D) is any full-rank (n - k) X n matrix with polynomial
elements in F [D] which satisfies

G(D)HT (D) = 0 (5)

where T denotes matrix transpose. A modification of the
method of Forney (Ref.4) is used to find A. The method

involves a partitioning of matrix B in Eq. (4), as well as its
inverse B~!. That is, let

Bl
B = (6)
B2
and
B! = [B,, B)] Q)

where the first k¥ rows of B constitute the submatrix B; and
the remaining (n -~ k) rows are the matrix B,, and where,
likewise, the first k& columns of B~ constitute the submatrix
B, and the remaining (# - k) columns are the matrix B,

Since B times its inverse B~! is the n X n identity matrix,
the following identities evidently hold:

o = A
3131 B Ik
BB =0
172
) ®
13231 = 0
B,B, =1, _,

In terms of the partition in Eq. (7), the Forney parity-check
matrix is defined by

H = BT ©)

1t is readily verified using Eq. (4) and the identities of Eq. (8)
that Eq. (9), in fact, satisfies Eq. (3), the requirement for
to be a parity-check matrix. It should be noted that the
parity-check matrix is not unique. For example, it can be
shown that H = C BT is a parity-check matrix where C is any

2
(n - k) X (n - k) invertible matrix with elements in F [D].

For an input message x(D), as defined in Eq. (1), the
encoded message or code sequence is y(D) as generated by
Eq. (3). Suppose that y = y(D) is transmitted and z = z(D)
is received. Then, the transmitted and received sequences are
related by

z(D) = y(D) +e(D) (10)
where e(D) is the D-transform of the error sequence. The
syndrome of the received code z(D) is

s(D) = z(D) X HY (D) an
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If (D) in Eq. (3) is substituted in Eq. (10), then the
syndrome, computed in Eq. (11), satisfies, by Eq. (5),

s =zHT

(x G +e)HT

eHT (12)

This is the syndrome equation for the error sequence e = e(D).
The syndrome equation, Eq. (12), shows that the syndrome
computed in Eq. (11) is functionally independent of the
original transmitted code y(D) as well as the original message
x(D).

The problem of syndrome decoding of convolutional
codes is, as for block codes, to solve the syndrome equation,
Eq. (12), for the set of all possible solutions e = e(D). It has
been shown (Ref. 1) that this set of solutions is a coset of the
set of all codewords.

To explicitly solve the syndrome equation, Eq. (12), sub-
stitute A as given by Eq. (9) in Eq. (12), thereby obtaining

B 0
s=e2=eB”1[ ] (13)
I

n-k

;vhere 1, _, is the identify matrix of (n - k) rows. In Eq. (13),
et

e=eB! 14

so that Eq. (13) becomes the simple equatio.:

0
s=¢€ [ :I (15)
In—k

where s = [s;, 5,,...,8, .l ande=[e, €,,...,€,]. The
general solution of Eq. (15) over the ring F[D] is given
evidently by

le,- 6. ..n6] = [1,7,,..., 7] =71
(641 €agrerer€yl = [sl’s2""’sn—k]
= g (16)

where T = 7.(D) are arbitrary elements in F[{D]. Thus, more
compactly, the general solution of Eq. (14) is
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€ = [7,5]

I

eB! 17

where T, as in Eq. (16), is an arbitrary k-vector with elements
in the ring F'[D]. Finally, a multiplication of both sides of Eq.
(17) by B yields

e = e_B
Bl
= [1,5]
BZ
= 1B, +sB, (18)

in terms of submatrices B, and B, in Eq. (6) as the most
general solution of the syndrome equation, Eq. (12).

The general solution, Eq. (18), of the syndrome equation
can be expressed in a number of different forms. For example,
it can be put into canonical form originally found heuristically
by Vinck, De Paepe, and Schalkwijk (Ref. 4). Towards this
end, note from the identities in Egs. (8) and (9) that B; is the
left inverse, denoted by H™ ', of the parity-check matrix H.
Hence,

B, =@ hH (19)

Next, note from the Smith normal form in Eq. (4) of a
basic encoder that

A716

[7,,0] B
= B, (20)

A substitution of B, in Eq. (20) and B, in Eq. (19) into
Eq. (18) yields

e = 74716 + s(H V)T (21)
Since 7 is an arbitrary k-vector of elements in F [D],
t =747} (22)

is also an arbitrary vector of polynomials in F[D]. Finally,
substituting ¢ in Eq. (22) into Eq. (21) yields,

e = 1G+s(HHT (23)

as the general solution of the syndrome equation, Eq. (12),
where G is the & X n generator matrix, A~ 1 is the left inverse




of the parity-check matrix, s is the (n - k) component syn-
drome computed by Eq. (11), and ¢ is an arbitrary k-vector
with elements in ' [D]}. The above proof is a simplification of
a more general version, given in Ref. 2, of the Vinck, de Paepe,
and Schalkwijk identity heuristically established in Ref. 4.
Herein, it is desired to put Eq. (23) in a form which makes it
possible in the syndrome decoding process to bypass the
explicit computation of the syndrome s(D).

Towards this end, substitute Eq. (19) into Eq. (23) and, by
Egs. (9) and (11), the quantity z B, for the syndrome s. These
substitutions yield

e = 1G+z(B,B,) o (24)
in terms of received sequence z as the general solution of the
syndrome equation.

_ In Eq. (24), let R be the n X n matrix B, B, since B, and
B, have ranks (n - k), it can be shown that the matrix R =
B, B,, where B, and B, are defined in Egs. (6) and (7), re-
spectively, also has rank (n - k). Substituting R into Eq. (24)
yields

e = tG+zR (25)
as the general solution of the syndrome equation. Here, R is
the # X n, rank (n - k) matrix

(26)

t is an arbitrary k-vector of elements in F[D], and z is the
D-transform of the received sequence.

Let z(D) be any finite-length received sequence. By the
maximum likelihood principle, the most likely error sequence
is the one with minimum Hamming weight. Given z(D), the
sequence e(D) with minimum Hamming weight is found by
minimizing the weight of the right side of Eq. (25) over all
polynomials #(D) in F[D]. That is,

min |le|l = min || tG+zR ||, teF[D] 27
where z = z(D) is the D-transform or polynomial of any finite-
length received sequence and || x || denotes the Hamming
weight or “norm” of an element x = x(D) in F [D].

The minimization required in Eq. (27) is analogous to cer-
tain optimum nulling techniques in control theory. The
sequence r(D) = z(D) R(D) is the error sequence for (D) = 0.
What one attempts to do in Eq. (27) is to find that sequence 7
which, when encoded as 7 G and subtracted from #(D), yields
the sequence € of minimum Hamming weight. That is, if

T= ?(D) is the D-transform for which |le || = || tG+z R |l is
minimum, then-
€=7fG+zR

(28)

is the D-transform of the minimum-weight-possible error
sequence.

By Eq. (4), the right inverse G™! of the generating matrix

Gis
Ik
G"‘l = B—l[ ]A"'l
0

This is verified by multiplying G in Eq. (4) on the right by
G™! in Eq. (29). Multiplying both sides of Eq. (28) on the
right by G™! in Eq. (29) yields, by Egs. (7) and (8), the
identity

(29)

@)
Q
1
il

~ P -1
[fG+zB,B,] G

T
2B B -1
t+zB,B, [Bl’Bz] 6 A

Ik
T+zB,[0,1,,]| (47"
0

=7 (30)

By Eq. (10), the subtraction of € from z produces a best
estimate ¥ of the transmitted code, i.e.,
y=z-C

(31)

The best estimate 7 of the code, if multiplied on the right by
G, yields
$=567"1 (32)

which is the best estimate of the original message. Hence, sub-
stituting Eq. (31) in Eq. (32) and using Eq. (30) produces

£=0¢-9G¢!

~

=zG -7 (33)
This important identity shows that  =HD), obtained by the
minimization in Eq. (27), is a correction factor to the standard
method of recovering the message from z = z(D) if z were
noise-free.
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In the following section, the techniques of performing the
minimization in Eq. (27) for finding € and 7 are discussed.
Among these methods are the Viterbi dynamic programming
algorithm and some of the sequential decoding techniques.
Then, the syndrome-decoding algorithm described above is
applied to systematic high-rate CCs and, in particular, to the
one-error-correcting CC developed originally by Wyner and
Ash (Ref. 5).

lll. Syndrome Decoding of Systematic
Convolutional Codes

The results of the preceding section are now applied to
systematic convolutional codes. The generator matrix for a
systematic CC has form

GD) = [, P(D)] (349

where [, is the & X % identity matrix and P(D) isa &k X (n - k)
matrix of polynomials over GF(q) in the delay operator D.
Again, as in the general case, the maximum degree M of the
polynomials in P(D) is called the memory of the code and
K =M + 1 is the constraint length.

A parity-check matrix associated with G(D) in Eq. (34) is
the (n - k) X n matrix,

HD) = [-PT(D),1,_,] (35)

This follows from the fact that H(D) has rank n - k and that it
satisfies Eq. (5).

The Smith formal form of Eq. (34) is, by Eq. (4),

G =A[,0]B
I,P

= Ik’O] 0.7 (36)

“n-k

where P = P(D), the matrix of polynomials in the generator
matrix G(D) in Eq. (34). Hence, for a systematic code, 4 =1 .
and

B = ' (37

Because of the triangular form of B, the inverse is readily
found to be
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I,-P
Bl = (38)

0,7

>Tn-k

which actually equals B when the field of coefficients is the
binary field GF(2).

The partitions, given in Egs. (6) and (7), of B and B~!,
respectively, are, for a systematic CC,

a

where .
B1 = [Ik,P(D)]
(39)
B, = 0,7, ]
and
B! = [B,B,]
where
: r
B1 =
0
_ (40)
_ -P
32 =
In—k
.

Note that the parity-check matrix found by Eq. (9) from §2
in Eq. (40) actually equals the parity-check matrix found
already in Eq. (35) by satisfying Eq. (5). As a consequence,
for a systematic CC, the syndrome s in Eq. (12) is

s=zHT
-P
z
In—k
~-P
[zm, zp]
In-—k

- 2,,(D)P(D) +z,(D) (41)

]



where z_ (D) is the message code vector of & components,
possibly corrupted by noise, and z_(D) is an (# - k) compo-
nent vector of parity symbols, also possibly changed by chan-
nel noise.

Next, by Egs. (39) and (40), the matrix R in Eq. (26) is
given by

B, B,

[ -P
= ] [0,7, ]
k

~
]

I

— -

0, -P ]
LO’ In-—k
Thus, for a systematic CC, the general solution, Eq. (25), of

the syndrome equation, Eq. (12), is, by substituting Eqs. (34)
and (42) into Eq. (25),

(42)

tG+zR

0,-P
t[Ik,P] +z

0,71

*“n-k

-P
[¢I,,tP(D)] + o,z[ ]

In-—k

e(D)

It

(4D, (¢(D) - 2,,(D)) P(D) +2,,(D)] (43)

where z, (D) is the received message sequence “in the clear,”
z_(D) is the received parity sequence of the CC, and #(D) is an
efement of F[D]. By Eq. (41), the above general solution, Eq.
(43), of the syndrome equation for a systematic CC can be
expressed in the alternate form

e(D) = [#(D), {(D) P(D) +s(D)] (44)

where s(D) is the syndrome, computed by Eq. (41) in terms of
z, (D)and zp(D).

The “best” correction factor 7(D) for all systematic CCs is
found, as in Eq. (27), by minimizing the Hamming weight of

e(D), given in Egs. (43) of (44). For low-rate systematic CCs,
this minimization can be taken over ¥ [D], whereas for high-
rate systematic CCs, this minimization need only be accom-
plished over a small subset, call it £, of F[D], defined by
error-bound constraints of the particular CC. This latter fact
for high-rate systematic CCs will be demonstrated for the one-
error correcting Wyner-Ash CC (Ref. 6). It is the very small
size of the set E compared to the set F[D] which makes
syndrome decoding more efficient than the classical maximum
likelihood method for decoding CCs.

Let € denote the error sequence of the solution, Eq. (44),
of minimum Hamming weight, and let 7 be the element #(D) e
F(D), for which the Hamming weight of e(D) in Eq. (43) or
Eq. (44) is minimum, Then, by Egs. (43) and (44), as in Eq.
(28), ¢ and 7 are related by

)
It

[f,(F- z,)P+z,]

1}

[AFP +5] (45)

By Eqgs. (29), (36), and (38), the right inverse of the gener-
ator matrix G in Eq. (34) is

Ik
G™! =51
0

(46)

Hence, by Egs. (45) and (46), the relation
eGlt =7

given in Eq. (30), also holds for systematic CCs. Again, the
subtraction of € from z produces

~

”~
y=z-%¢
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as the best estimate of transmitted code, so that

=56

z-dG!

GV -7F

(47)

as the best estimate of the received message in terms of z,,,, the
. . . ~
received message ““in the clear,” and the correction factor, 7.

Iv. Error Trellis Syndrome Decoding of
Wyner-Ash Convolutional Code

The Wyner-Ash one-error correction codes were first de-
fined in Ref. 5. A more modern and understandable develop-
ment can be found in Blahut’s recent book (Ref. 7). Instead of
defining the CC only in terms of its infinite generator or
parity-check matrix, as is done in Ref. 7, here the infinite
matrices are converted first into compact matrices in terms of
the delay operator D, If

G(D) = G,+G,D+...,+G, D" (48)

is a generator matrix of a CC of memory M =m, as defined in
Eq. (3), then evidently

G, G, G, G, 0 0

0 G, G, G, G, 0
G =

0 0 G, G, G, G,

49)

is the infinite generator matrix associated with G(D). Thus, a
systematic code with generator matrix G(D) = [[,, P (D)] has
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I, P, 0 P, 0 P, 0P,
I, P, 0 P 0 P 0P
G =
I, P, 0 P 0 P, 0P

(50)
as its companion infinite generator matrix, where

P(D) =P tP D+...,P D" (51
where 0 is the k¥ X % all-zero matrix and P, are k X k (n - k)
matrices. Since, by Eq. (35), H(D) = [FPT(D), I,_,] is a
parity-check matrix of G(D), given above, the associated
infinite parity-check matrix is

. 2 1
H =
T
PT 0
P! 0
m
T
P, 0

(52)

The results in Eqgs. (50) and (52) are given in Ref. 6 in the
same notation.

In terms of Egs. (51) and (52), Blahut defines an (», k) =
(2m, 2m - 1) Wyner-Ash code as follows: Let H! be the
parity-check matrix of the binary (2 - 1, 2™ - 1 - m)
Hamming one-error-correcting block code. Choose matrices
P711', P;, e P,f, to be the m rows of the parity-check matrix
Hl ie.,




K

T
[‘Pl’Pz) ree ’Pm]

-

1l

Finally, let P be a vector of 2™ - 1 ones, i.¢.,

T -
PT = [1,1,1,...,1]
m -1

(53)

(59

Blahut shows (Ref. 7, Theorem 12.5.1) that the minimum
distance of the Wyner-Ash code is 3 and, as a consequence, it
will correct at least one error. To understand this code in more
detail and to apply the decoding technique developed in the

last section to it, consider now an example for m = 2.

Example: The m = 2, the parity-check matrix of the Ham-

ming code, is

110
H!' =
101

so that, by Egs. (53) and (54),PT=[1 1 1],PT=[11 0],

and PT =[1 0O 1]. Thus, by Eqgs. (51),

1 +D + D?
PD)= |1 +D

1 + D?
and, by Egs. (34) and (35),
100,1+D+D?
GD)=l010,1+D

001,1 + D?

and

H®D) = [1+D+D?* 1+D,1+D% 1]

(59)

are the generator and parity-check matrices of the (4, 3)
Wyner-Ash CC, respectively, Also, by Eqgs. (37) and (38)

B = B~

1

1., P(D)

so that, by Egs. (39) and (40), B, =[0 0 0 1] and B, =HT

and, finally, by Eq. (42),

000,
000,

000,

000,

1+D+ D2

1+D
[000 1]

(56)

The above results for this 3/4 rate CC can now be used to
explicitly obtain the general solution e(D) in Eq. (43) of the
syndrome equation. This is accomplished by substituting Eqgs.
(55) and (56) into Eq. (25) or directly from Eq. (43). The

result is

eD)=e

it

e, e, 250 €,]
[£,(¢, +z,) (1 + D +D?)
+(t, tz,)(1+D)

+(t, +2,) (1 + D) +2,]

(57
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where

(D) =

il

o~

!
—

~

o~

~

w

s

(58)

By Egs. (41) and (44), e in Eq. (57) can also be expressed
more compactly as

e = [t r+s] (59)
where s is the syndrome,
s(D) =5 =z (1+D +D2)+22(1 +D)
+z,(1+D*) +z, (60)
and
D)y =r=1t(1+D +D2)+t2(1 +D)
+1,(1+D?) 61)

Note that the term H(D) = r in Eqs. (59) and (61), in order to
minimize the Hamming weight of e(D), must be chosen to
“cancel s(D)” in Eq. (59). For this reason, one might call n(D)
the regulator needed to cancel the syndrome s(D).

Now, the formal power series for e(D) in the delay operator
is explicitly

eD) = [e,(D),e,(D),...,e, (D]
= Z [e”, e, .,eni] D/ (62)
j=0

Define the truncation of e(D) at stage or frame time NV in
terms of Eq. (62) as

N
@]y = 3 leypeyp-- e, 1D (63)
j=0

Thus, the Hamming weight of the sequence of possible errors
in V frames is

N
I @yl = D lleyp ey vl
j=0
N
= 3 ll coef [e(D)] || (64)
i=o o/
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where the latter expression under the summation is the Ham-
ming weight of the coefficient of the jth power of D.

By Eqgs. (57) and (64) for this particular example of con-
volutional code,

coef [e(D)] =
D]

t .t

[tlj, 2y tap B +s]

(65)

where

(66)

is the regulator function at frame j, and

T2 RN

+221+22,/,_1

+z.. + ,
z:—!/ 23,1—2

tz,, (67

is the syndrome function at frame j in terms of binary vari-
ablest andz defined by,

r®@) =31t p e s tl Dl
=0

= i: _t.ij
i=0

2(D) = 3 (2,7, -+ 52,510
=0

Note in Eq. (66) that7; is a function of tj [£1p tapp 2351,
t; 1 = [, g1 a1 ’31 ] and 45 = [t 5, 850,
f3 4~ 2] That is, at frame /, ] is a functlon of 4 at frame j; a
function of #;_, at frame j-1; and a function of #;_, at frame
j-2iie.,

(/' -1’ ] 2) (68)




If the values of the regulator function t at frame j are imag-
ined to be generated by a sequential circuit, then the pair

o, = (1/_1,11._2) (69)
constitutes the values of the internal state of the circuit and
vector #; is the jth input to the circuit.

Let the sequential circuit with output
u, = [ty 7 (¢ 0)] (70)

be the regulator circuit of the decoder, where o; is the internal
state defined by Eq. (69). Also, call the set of all allowable
paths generated by Eq. (70) the regulator tree or trellis.
Finally, by Eq. (59), the error trellis of the code is, for all
paths generated,

y = [t +r 0] (7

To illustrate the above concepts, let the input to the
present example of the (4, 3) CC be

x=[111,000,111,000,11 1]

ie,x, ={10101] = X, = X,. By the generating matrix
given in Eq. (55), the outputy = [yl, Vor Vg y4] is obtained
in what follows: y, =y, =y, =x = [10101],andy, =
(1+D +D? x, +(1+D)x, +(1 +D?)x,. Explicitly, y, is
computed from this relation as follows:

x 110101
Dx i 10101
D*x, 10101
x,: 10101
Dx,: 10101
x3:10101
D?x, 10101

y,=01010100]

Thus, the output of the encoder is

y=[1111,00001111,
(72)
0000111 1]

Assume y, given in Eq. (72), is transmitted over a binary
symmetric channel with probability of error somewhat less
than 1/12 = 0.0833 .... Then, suppose that the received
coded sequence is

2=[1101,0000,1111,
(73)
0000,0111]

e,z =[101 00],2z,={10101],2, = [00101]} and
z, = {101 0 1]. By Eq. (60), the syndrome sequence for this
value of received sequence is computed to be

s=[1010111] (74)

by the same method used above to obtain y, .

It is shown in Ref. 7 (p. 366) that the rate 3/4 code of this
example can correct one error in every 3 frame times or code
length of 12. As a consequence, one needs only to correct one
error every 3 frames. This limits the number of values of
t=[¢,, t,, 1,] to 4, namely the values

i
il

[000] =0, [100] 1

(75)

1
Ml

010 =2 1[001] =3
Note that the four values of ¢ in Eq. (75) allow for, at most,
one error, and that these four values are conveniently labeled

by the integers =0, 1, 2, or 3.

Figure 1 shows a constrained regulator trellis with outputs
[¢, ¥]. In Fig. 1, note that, because of the limited error-
correction capability of the code, the number of internal
states ¢ = (D¢, D) of the regulator circuit can be limited to
7 out of a possible 64. Moreover, the number of state transi-
tions can be limited to those shown in Fig. 1 for the regulator
trellis. The branches of the regulator trellis are labeled with
the value [¢, #]. For example, the branch from state o = [0 0]
to ¢ = [3 0] is labeled by {¢, #] = [3, 1] =[0, 0, 1, 1], which
means ¢, =0, I =0, = l,andr=1.

To decode the message in Eq. (73), by Eq. (70) an error
trellis is created by adding the vector [0, s] to all labels in
the regulator trellis where s is the syndrome value. Thus, in
Fig. 2, the values of [0, s}, where s is the syndrome value in
Eq. (74), appear on all possible transitions ¢ = [0 0] to ¢ =
[0 0] on the top line of the error trellis. At each node, the

1N




cumulative Hamming weight of the path, passing through that
node, is written.

The Hamming weight at each node, plus the weight of a
possible branching from that to the next node, is used to
eliminate branches. The technique is similar to the method in
Viterbi decoding for eliminating branches. To iilustrate, in
Fig. 2 there are four branches at Frame 2 which could go to
state or node o = [0 0]. The transition is chosen as the branch
from ¢ = [0 3] to o = [0 0] since the node weight 2 plus
branch weight 0 is 2, the minimum of the 4 possible
transitions.

The minimum overall path weight of the error trellis in
Fig. 2 is

[0 0,3 0,03,00,00,10,01,00,0 0]

in terms of state values ¢ = Dt, D?t. Hence, based on the
criterion of Eq. (27), the best estimate of 7 is -

¥ = 1[3,0,0,0,1,0,0,0]

11

[001,000,000,000,

100,000]

If this vector is added component-wise to z in Eq. (73), the
message is corrected to yield % = x, the original message.
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Fig. 2. Error trellis with Input and state-transition constraints for one-error-correcting Wyner-Ash
convolutional code




